|
wxcute
中级用户
  
积分 458
发帖 211
注册 2006-7-26
状态 离线
|
『第 16 楼』:
使用 LLM 解释/回答一下
根据大伙的理解,理想钟应该是重合23次。
0-24 包含 25 个整点,24 个小时;
11-13 两个整点间只有 12 点重合,同理 23-24 之间只有24;
0-24 相当于一整天多一秒,而刚好这一秒就是重合的,所以是 22+1=23 次。
According to everyone's understanding, the ideal clock should overlap 23 times.
0-24 contains 25 whole hours, 24 hours;
Between 11-13, there is only the 12 o'clock overlap between the two whole hours, and similarly, between 23-24, there is only 24;
0-24 is equivalent to one more second in a whole day, and just this one second is the overlap, so it is 22+1=23 times.
|

┌───────┐
├→学习→实践→┤
└───────┘ |
|
2009-1-13 12:45 |
|
|
zh159
金牌会员
     
积分 3687
发帖 1467
注册 2005-8-8
状态 离线
|
『第 17 楼』:
使用 LLM 解释/回答一下
时间象流水一样是连续的,而不是跳跃式的,所以理想钟应该象 8 楼说的
Time is continuous like flowing water, not in jumps, so the ideal clock should be like what the 8th floor said
|

 |
|
2009-1-13 18:16 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 18 楼』:
使用 LLM 解释/回答一下
(网上找的,没学过证明看不懂)
只有两次
假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω,秒针的角速度为72ω。分针与时针再次重合的时间为t,则有12ωt- ωt=2π,t=12/11小时,换算成时分秒为1小时5分27.3秒,显然秒针不与时针分针重合,同样可以算出其它10次分针与时针重合时秒针都不能与它们重合。只有在正12点和0点时才会重。
证明:将时针视为静止,考察分针,秒针对它的相对速度:
12个小时作为时间单位“1”,“圈/12小时”作为速度单位,
则分针速度为11,秒针速度为719。
由于11与719互质,记12小时/(11*719)为时间单位Δ,
则分针与时针重合当且仅当 t=719kΔ k∈Z
秒针与时针重合当且仅当 t=11jΔ j∈Z
而719与11的最小公倍数为11*719,所以若t=0时三针重合,则下一次三针重合
必然在t=11*719*Δ时,即t=12点。
(Found online, didn't study the proof and don't understand)
Only twice
Assume the angular velocity of the hour hand is ω (ω = π/6 per hour), then the angular velocity of the minute hand is 12ω, and the angular velocity of the second hand is 72ω. Let t be the time when the minute hand and the hour hand coincide again, then 12ωt - ωt = 2π, t = 12/11 hours, converted to hours, minutes and seconds is 1 hour 5 minutes 27.3 seconds. Obviously, the second hand does not coincide with the hour hand and the minute hand. Similarly, it can be calculated that the second hand cannot coincide with them in the other 10 times when the minute hand and the hour hand coincide. Only at exactly 12 o'clock and 0 o'clock do they coincide.
Proof: Treat the hour hand as stationary, and examine the relative speeds of the minute hand and the second hand with respect to it:
Take 12 hours as the time unit "1", and "circles/12 hours" as the speed unit,
then the speed of the minute hand is 11, and the speed of the second hand is 719.
Since 11 and 719 are coprime, let 12 hours / (11*719) be the time unit Δ,
then the minute hand coincides with the hour hand if and only if t = 719kΔ, k ∈ Z
The second hand coincides with the hour hand if and only if t = 11jΔ, j ∈ Z
And the least common multiple of 719 and 11 is 11*719, so if the three hands coincide at t = 0, then the next time the three hands coincide
must be at t = 11*719*Δ, that is, t = 12 o'clock.
|
|
2009-1-14 00:13 |
|
|
slore
铂金会员
      
积分 5212
发帖 2478
注册 2007-2-8
状态 离线
|
『第 19 楼』:
看你怎样理解钟针的转动,答案就不唯一了。
使用 LLM 解释/回答一下
说了,如果按角度算是得不到我的结果的。
这个题没有说针的转动方式。有一直都走的钟,大多数设计的
针还是一跳一跳的。。。最小摆幅为1秒。。。
这种针不是匀速圆周运动的……上面的证明就不适用了。
It is said that if you calculate by angle, you won't get my result. This problem doesn't say the way the needle rotates. There are clocks that always run, and most of the designed needles still jump. The minimum swing amplitude is 1 second... This kind of needle is not in uniform circular motion... The above proof is not applicable.
|

S smile 微笑,L love 爱,O optimism 乐观,R relax 放松,E enthusiasm 热情...Slore |
|
2009-1-14 10:25 |
|
|
terse
银牌会员
    
积分 2404
发帖 946
注册 2005-9-8
状态 离线
|
『第 20 楼』:
使用 LLM 解释/回答一下
12小时重合
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%d%%n:~,1%%%11,m=%d%%n:~,1%/11
if "%i%"=="0" set i=
set i=%i%%m%
set n=%n:~1%
if defined n goto lp
set/a d=%1*60-(11*i)
:lp1
set/a m=d*10/11,w+=1
if "%j%"=="0" set j=
if %w% lss 5 set j=%j%%m%&set/a d=d*10%%11&goto lp1
set/a j*=6,h+=%1+i/60,i%%=60
set h=0%h%&set i=0%i%&set j=0%j%
echo %h:~-2%:%i:~-2%:%j:~-5,2%.%j:~-3,2%
goto :eof
Last edited by terse on 2009-1-15 at 11:17 ]
12-hour overlap
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%d%%n:~,1%%%11,m=%d%%n:~,1%/11
if "%i%"=="0" set i=
set i=%i%%m%
set n=%n:~1%
if defined n goto lp
set/a d=%1*60-(11*i)
:lp1
set/a m=d*10/11,w+=1
if "%j%"=="0" set j=
if %w% lss 5 set j=%j%%m%&set/a d=d*10%%11&goto lp1
set/a j*=6,h+=%1+i/60,i%%=60
set h=0%h%&set i=0%i%&set j=0%j%
echo %h:~-2%:%i:~-2%:%j:~-5,2%.%j:~-3,2%
goto :eof
Last edited by terse on 2009-1-15 at 11:17 ]
此帖被 +2 点积分 点击查看详情 评分人:【 exzzz 】 | 分数: +2 | 时间:2009-1-22 00:23 |
|
|

简单!简单!再简单! |
|
2009-1-14 16:41 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 21 楼』:
使用 LLM 解释/回答一下
Originally posted by terse at 2009-1-14 16:41:
12小时重合
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%d%%n:~,1%%%11,m=%d%%n:~,1%/11
...
非常版主这个看不懂啊,简单介绍下算法吧。
Originally posted by terse at 2009-1-14 16:41:
12-hour coincidence
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%d%%n:~,1%%%11,m=%d%%n:~,1%/11
...
The very version of the moderator can't understand this. Briefly introduce the algorithm.
|
|
2009-1-14 23:41 |
|
|
terse
银牌会员
    
积分 2404
发帖 946
注册 2005-9-8
状态 离线
|
『第 22 楼』:
使用 LLM 解释/回答一下
Originally posted by linee at 2009-1-14 23:41:
非常版主这个看不懂啊,简单介绍下算法吧。
我的思路是这样 探讨下不知正确否
假设表面为60刻度 一小时是5个刻度 x个刻度就是 0点后的x/5刻度 同样y分钟就是y/60小时 到下一个重合点的时候 两刻度相对0点后刻度一样 即x/5小时-y/60小时是个整数 因为分走多一圈 所以一直递增 1 因为刻度一样所以我想 X/5-Y/60的结果应该是 0-11递增 这里的x和y刻度相等也就是X/5-X/60
刚用批写了个 由此题派生出的另一题:
就是时针和分针在什么刻度可以对调且是合理的比如:
07:43:13.00
07:48:15.10
07:53:17.20
07:58:19.29
08:03:21.39
08:08:23.49
08:13:25.59
08:18:27.69
08:23:29.79
08:28:31.88
08:33:33.98
08:38:36.07
Originally posted by linee at 2009-1-14 23:41:
The super moderator can't understand this. Simply introduce the algorithm.
My thinking is like this. Let's discuss whether it's correct or not.
Suppose the surface has 60 scales. One hour is 5 scales. x scales is x/5 scales after 0 o'clock. Similarly, y minutes is y/60 hours. When reaching the next coincidence point, the two scales are the same after 0 o'clock. That is, x/5 hours - y/60 hours is an integer. Because the minute hand goes one more circle, so it keeps increasing by 1. Because the scales are the same, so I think the result of X/5 - Y/60 should be increasing from 0 to 11. Here, x and y scales are equal, that is, X/5 - X/60.
Just wrote a batch to derive another problem from this question:
That is, at what scales the hour hand and the minute hand can be swapped and are reasonable, for example:
07:43:13.00
07:48:15.10
07:53:17.20
07:58:19.29
08:03:21.39
08:08:23.49
08:13:25.59
08:18:27.69
08:23:29.79
08:28:31.88
08:33:33.98
08:38:36.07
|

简单!简单!再简单! |
|
2009-1-15 02:40 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 23 楼』:
使用 LLM 解释/回答一下
Originally posted by terse at 2009-1-15 02:40:
我的思路是这样 探讨下不知正确否
假设表面为60刻度 一小时是5个刻度 x个刻度就是 0点后的x/5刻度 同样y分钟就是y/60小时 到下一个重合点的时候 ...
应该是正确的,与我计算的非常相似(我是按时针分针每过12/11时刻重合一次来算的),如下图:
怎么没图呢?
算了,就文本说明吧,你这个计算下来跟我计算的(前面提供过)非常相似,只有一个时刻异常,就是09:49这个时刻,你这个计算的是09:49:54.540,我前面提供是的09:49:05.45,一个54一个05差的不是一点半点,有点奇怪。
先分析下你的代码看看。
Last edited by linee on 2009-1-15 at 09:54 ]
Originally posted by terse at 2009-1-15 02:40:
My train of thought is like this. Let's discuss whether it's correct or not.
Suppose the surface has 60 scales. One hour is 5 scales. x scales is x/5 scales after 0 o'clock. Similarly, y minutes is y/60 hours. When reaching the next coincidence point...
It should be correct, very similar to my calculation (I calculate it by the fact that the hour hand and minute hand coincide once every 12/11 hours). As follows:
Why is there no picture?
Forget it, just explain in text. Your calculation is very similar to mine (provided earlier). There is only one abnormal moment, which is at 09:49. Your calculation is 09:49:54.540, and what I provided earlier is 09:49:05.45. There's a big difference between 54 and 05. It's a bit strange.
Let's analyze your code first.
Last edited by linee on 2009-1-15 at 09:54 ]
|
|
2009-1-15 09:28 |
|
|
terse
银牌会员
    
积分 2404
发帖 946
注册 2005-9-8
状态 离线
|
『第 24 楼』:
使用 LLM 解释/回答一下
Originally posted by linee at 2009-1-15 09:28:
....一个54一个05
取位错了 已修正
Originally posted by linee at 2009-1-15 09:28:
....One is 54 and the other is 05
The bit position was wrong, has been corrected
|

简单!简单!再简单! |
|
2009-1-15 11:18 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 25 楼』:
使用 LLM 解释/回答一下
Originally posted by terse at 2009-1-15 02:40:
我的思路是这样 探讨下不知正确否
假设表面为60刻度 一小时是5个刻度 x个刻度就是 0点后的x/5刻度 同样y分钟就是y/60小时 到下一个重合点的时候 ...
分析下来,你这个的结果应该就相当于每过12/11时刻重合一次,尝试修改你的代码如下,希望不要介意。
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%n%%%11,i=%n%/11
set/a j=d*10000/11
set/a j*=6,h=%1+i/60,i%%=60
set h=0%h%&set i=0%i%&set j=0%j%
echo %h:~-2%:%i:~-2%:%j:~-5,2%.%j:~-3,2%
goto :eof
Originally posted by terse at 2009-1-15 02:40:
My thinking is like this. Let's discuss whether it's correct or not.
Assume the surface has 60 scales. One hour is 5 scales. x scales is x/5 scales after 0 o'clock. Similarly, y minutes is y/60 hours. When reaching the next coincidence point...
After analysis, the result of yours should be equivalent to coinciding once every 12/11 hours. Try modifying your code as follows, hope you don't mind.
@echo off
for /l %%i in (0 1 11) do (
setlocal
set/a n=%%i*60
call:lp %%i
endlocal
)
pause&goto :eof
:lp
set/a d=%n%%%11,i=%n%/11
set/a j=d*10000/11
set/a j*=6,h=%1+i/60,i%%=60
set h=0%h%&set i=0%i%&set j=0%j%
echo %h:~-2%:%i:~-2%:%j:~-5,2%.%j:~-3,2%
goto :eof
|
|
2009-1-15 15:10 |
|
|
terse
银牌会员
    
积分 2404
发帖 946
注册 2005-9-8
状态 离线
|
『第 26 楼』:
使用 LLM 解释/回答一下
我实际解了上面程式 你简化很多 很好
再讨论下时针和分针在什么刻度可以对调且是合理的情况
其中重合情况 作了提示
@echo off
for /l %%i in (0 1 11) do (
for /l %%j in (0 1 11) do (
setlocal enabledelayedexpansion
set/a n=^(%%j*12+%%i^)*60
set/a d=n%%143,i=n/143,j=d*10000/143,j*=6,h=%%i+i/60,i%%=60
set h=0!h!&set i=00!i!&set j=00!j!
if %%i equ %%j (echo 表针重合 echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
) else echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
endlocal
))
pause&goto :eof
重合的代码 放在for里效率高点 前面的call出是因为考虑小数 现在这样直接可以了
@echo off
for /l %%i in (0 1 11) do (
setlocal enabledelayedexpansion
set/a n=%%i*60,d=n%%11,i=n/11,j=d*10000/11,j*=6,h=%%i+i/60,i%%=60
set h=0!h!&set i=00!i!&set j=00!j!
echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
endlocal
)
pause
Last edited by terse on 2009-1-18 at 14:51 ]
I actually solved the above program. You simplified a lot, which is very good.
Let's discuss again at what scales the hour hand and minute hand can be swapped and be in a reasonable situation. Among them, the coincidence situation has been prompted.
@echo off
for /l %%i in (0 1 11) do (
for /l %%j in (0 1 11) do (
setlocal enabledelayedexpansion
set/a n=^(%%j*12+%%i^)*60
set/a d=n%%143,i=n/143,j=d*10000/143,j*=6,h=%%i+i/60,i%%=60
set h=0!h!&set i=00!i!&set j=00!j!
if %%i equ %%j (echo The hands coincide echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
) else echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
endlocal
))
pause&goto :eof
The code for coincidence is placed in the for loop for higher efficiency. The previous call was because of considering decimals. Now it's directly okay.
@echo off
for /l %%i in (0 1 11) do (
setlocal enabledelayedexpansion
set/a n=%%i*60,d=n%%11,i=n/11,j=d*10000/11,j*=6,h=%%i+i/60,i%%=60
set h=0!h!&set i=00!i!&set j=00!j!
echo !h:~-2!:!i:~-2!:!j:~-5,2!.!j:~-3,2!
endlocal
)
pause
Last edited by terse on 2009-1-18 at 14:51 ]
|

简单!简单!再简单! |
|
2009-1-15 15:26 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 27 楼』:
使用 LLM 解释/回答一下
时针分针对调是什么意思?
What does "hour hand and minute hand exchange" mean?
|
|
2009-1-15 17:26 |
|
|
terse
银牌会员
    
积分 2404
发帖 946
注册 2005-9-8
状态 离线
|
『第 28 楼』:
使用 LLM 解释/回答一下
Originally posted by linee at 2009-1-15 17:26:
时针分针对调是什么意思?
比如 重合时时针分针对调位置肯定是合理的 如3点的时候 对调位置显然是不合理的 因为时针12点的时候 分针绝不会在3点吧
Originally posted by linee at 2009-1-15 17:26:
What does "swap the positions of the hour hand and minute hand" mean?
For example, when they overlap, swapping the positions of the hour hand and minute hand must be reasonable. For example, at 3 o'clock, swapping the positions is obviously unreasonable because when the hour hand is at 12 o'clock, the minute hand will never be at 3 o'clock.
|

简单!简单!再简单! |
|
2009-1-15 17:33 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 29 楼』:
使用 LLM 解释/回答一下
Originally posted by terse at 2009-1-15 17:33:
比如 重合时时针分针对调位置肯定是合理的 如3点的时候 对调位置显然是不合理的 因为时针12点的时候 分针绝不会在3点吧
有点难理解,不想研究了。
Originally posted by terse at 2009-1-15 17:33:
For example, when the time coincides, swapping the positions of the hour and minute hands is definitely reasonable. For example, at 3 o'clock, swapping the positions is obviously unreasonable because when the hour hand is at 12 o'clock, the minute hand will never be at 3 o'clock.
A bit difficult to understand, don't want to study anymore.
|
|
2009-1-16 23:03 |
|
|
linee
初级用户
 
积分 94
发帖 49
注册 2008-12-14
状态 离线
|
『第 30 楼』:
使用 LLM 解释/回答一下
我来发一个看如何,
惭愧啊,书到用时方恨少,总觉得表达不清楚,我很努力了,将就看吧。欢迎指正。
:: 时钟三针重合问题:
::
:: 思路:先找时针分针重合的位置s1,再找此时秒针的位置s2,
:: 如果s2=s1则三针重合。从0点比对到24点结束。
::
:: 时针分针第一次重合发生在1点到2点之间,设此时刻时间为t,
:: 时针角速度为w,此时时针行进wt,分针角速度为时针的12倍,
:: 有分针行进12wt,此时分针比时针多转一圈(12w),于是有:
:: 12wt-wt=12w,t=12/11
:: 此时时针位置wt=w*12/11=(1/11)*12w,相当于1/11圈,可取
:: s1=1/11
:: 又秒针角速度是时针的720倍,此时秒针行进720wt,秒针位置
:: 720wt=720w*12/11=(65+5/11)*12w
:: 相当于65又5/11圈,可取
:: s2=5/11
:: 比对s1不等于s2,知道此时三针不重合,因cmd不支持浮点,
:: s1,s2的比对程序改除11为对11求余后再比对。
::
@echo off&setlocal enabledelayedexpansion
for /l %%i in (0,1,22) do (
set/a s1=%%i %%11,s2=%%i*5%%11,i=%%i+1
set/a h=%%i*12/11,m=%%i*60/11%%60,s=%%i*300/11%%60,sh=%%i*300%%11,sh*=100/11
for %%j in (h m s sh i) do if !%%j! lss 10 set %%j=0!%%j!
set /p=时分针重合_!i! !h!:!m!:!s!.!sh! <nul
if !s1! equ !s2! (set/a j+=1&echo 三针重合_!j!) else echo.
)
pause
Last edited by linee on 2009-1-16 at 23:14 ]
Let me post and see how it goes,
Ashamed, I regret not having read enough books when I need them. I always feel I can't express myself clearly. I've tried my best, just make do with it. Welcome to point out mistakes.
:: Clock three-hand coincidence problem:
::
:: Idea: First find the position s1 where the hour hand and minute hand coincide, then find the position s2 of the second hand at this time,
:: If s2 = s1, then the three hands coincide. Compare from 0 o'clock to 24 o'clock.
::
:: The first coincidence of the hour hand and minute hand occurs between 1 o'clock and 2 o'clock. Let the time at this moment be t.
:: The angular velocity of the hour hand is w. At this time, the hour hand travels wt. The angular velocity of the minute hand is 12 times that of the hour hand.
:: There is that the minute hand travels 12wt. At this time, the minute hand has traveled one full circle (12w) more than the hour hand. So there is:
:: 12wt - wt = 12w, t = 12/11
:: At this time, the position of the hour hand wt = w * 12/11 = (1/11) * 12w, which is equivalent to 1/11 circle, can be taken
:: s1 = 1/11
:: Also, the angular velocity of the second hand is 720 times that of the hour hand. At this time, the second hand travels 720wt. The position of the second hand
:: 720wt = 720w * 12/11 = (65 + 5/11) * 12w
:: Which is equivalent to 65 and 5/11 circles, can be taken
:: s2 = 5/11
:: Compare s1 is not equal to s2, knowing that the three hands do not coincide at this time. Because cmd does not support floating points,
:: The comparison program of s1 and s2 is changed to take the remainder of 11 and then compare.
::
@echo off&setlocal enabledelayedexpansion
for /l %%i in (0,1,22) do (
set/a s1=%%i %%11,s2=%%i*5%%11,i=%%i+1
set/a h=%%i*12/11,m=%%i*60/11%%60,s=%%i*300/11%%60,sh=%%i*300%%11,sh*=100/11
for %%j in (h m s sh i) do if !%%j! lss 10 set %%j=0!%%j!
set /p=Hour-minute hand coincidence_!i! !h!:!m!:!s!.!sh! <nul
if !s1! equ !s2! (set/a j+=1&echo Three-hand coincidence_!j!) else echo.
)
pause
Last edited by linee on 2009-1-16 at 23:14 ]
|
|
2009-1-16 23:06 |
|
|