|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『楼 主』:
经典的概率题--三个门,你会开哪扇?
使用 LLM 解释/回答一下
这是道很经典的概率题:
有三个门,里面有一个里有汽车,如果选对了就可以得到这辆车,
当应试者选定一个门之后,主持人打开了另外一个门,空的。
问应试者要不要换一个选择。
假设主持人知道车所在的那个门。
This is a very classic probability problem:
There are three doors, and one of them has a car. If you choose the correct one, you can get this car.
When the test taker selects one door, the host opens another empty door.
The question is whether the test taker should change the choice.
Assume that the host knows the door where the car is located.
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-15 00:00 |
|
|
yiyesong
元老会员
        
积分 1987
发帖 632
注册 2002-10-27
状态 离线
|
『第 2 楼』:
使用 LLM 解释/回答一下
不换,很简单,如果选中的是没有车的,主持人不会再给你一次机会。
No need to replace, it's very simple. If the selected one has no car, the host won't give you another chance.
|

http://dos.e-stone.cn/dosbbs
uploadImages/200311161145850422.swf
|
|
2003-6-16 00:00 |
|
|
Dark-Destroy
元老会员
        
积分 8312
发帖 3551
注册 2003-3-22
状态 离线
|
『第 3 楼』:
使用 LLM 解释/回答一下
呵呵.很明顯的,那位主持人就是要看應試者的決心夠不夠呢~
Hehe. Obviously, that host just wanted to see if the candidate's determination was strong enough~
|

MSN:tiqit2@hotmail.com
 |
|
2003-6-16 00:00 |
|
|
yiyesong
元老会员
        
积分 1987
发帖 632
注册 2002-10-27
状态 离线
|
『第 4 楼』:
使用 LLM 解释/回答一下
DD,不是这样讲的,KO说是概率题.我是这样分析的。
如果选中的没车,那么主持人让你再选你就有了50%的概率, 如果不让你再选,你就只有0%的概率。
如果选中的有车,主持人让你再选,你就只有50%概率,如果不让你再选你就是100%的机会。
按正常的情况下,有车的时候主持人会让你再选,没车的时候主持人是不会让你再选的。
DD, it's not to be said like that. KO said it's a probability problem. Here's my analysis.
If the one chosen has no car, then if the host lets you choose again, you have a 50% probability. If he doesn't let you choose again, you only have a 0% probability.
If the one chosen has a car, if the host lets you choose again, you only have a 50% probability. If he doesn't let you choose again, you have a 100% chance.
Under normal circumstances, when there's a car, the host will let you choose again. When there's no car, the host won't let you choose again.
|

http://dos.e-stone.cn/dosbbs
uploadImages/200311161145850422.swf
|
|
2003-6-16 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 5 楼』:
使用 LLM 解释/回答一下
很明顯,在沒選擇之前,每扇門後有車的機會都是1/3。
但在選擇了之後,在主持人打開了一扇空的門之後,各扇門的概率會不會變?
如果會,又是怎麽變化的?
It is obvious that before making a choice, the chance of having a car behind each door is 1/3. But after making a choice, and after the host opens an empty door, will the probability of each door change? If it does, how does it change?
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-17 00:00 |
|
|
沈洁
金牌会员
      小飞侠
积分 4590
发帖 1812
注册 2003-4-2 来自 上海市
状态 离线
|
『第 6 楼』:
使用 LLM 解释/回答一下
主持人在一扇门都没有开的时候每扇门的几率是33%
开了一扇门后这扇门不是,那么剩下两扇门的几率就被提升到了50%
When no door has been opened, the probability of each door is 33%. After one door is opened and it's not the one, then the probability of the remaining two doors is raised to 50%.
|

 |
|
2003-6-18 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 7 楼』:
使用 LLM 解释/回答一下
发信人: warreni (胖猫), 信区: IQDoor
标 题: Re: 哪位大侠把那道概率题的思路详细说一下?
发信站: BBS 水木清华站 (Fri Jul 27 01:44:26 2001)
我是这样认为的:
你开始选定一个门(A),其中有汽车的概率是1/3
而另两个门B、C中有汽车的概率是2/3
不管主持人打开B、C中的哪一个空门,上面这两个概率是不会变的
假设主持人打开B,是空的,那么C中有汽车的概率是2/3
所以应该换一个选择
The sender: warreni (Fat Cat), posting area: IQDoor
Subject: Re: Could any expert explain the thinking behind that probability problem in detail?
Posted: BBS Tsinghua University Station (Fri Jul 27 01:44:26 2001)
This is my understanding:
You initially choose one door (A), and the probability that there is a car behind it is 1/3
The probability that there is a car behind the other two doors B and C is 2/3
No matter which empty door the host opens among B and C, the above two probabilities will not change
Suppose the host opens B, which is empty, then the probability that there is a car behind C is 2/3
So you should change your choice
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 8 楼』:
使用 LLM 解释/回答一下
发信人: crystal41923 (脑子不灵), 信区: IQDoor
标 题: Re: 哪位大侠把那道概率题的思路详细说一下?
发信站: BBS 水木清华站 (Fri Jul 27 13:19:03 2001)
你划分一下马上就明白
因为汽车在A,B,三个门的概率都是1/3
则可以得到:若车在A,更改选择得到车的概率为0
若车在B,更改选择得到车的概率为1
若车在C,同理于B
所以更改选择得到的概率为2/3。
Sender: crystal41923 (Brain not working well), Message Area: IQDoor
Subject: Re: Which expert can explain the detailed idea of that probability problem?
Posted: BBS Tsinghua University Station (Fri Jul 27 13:19:03 2001)
You can understand it clearly by dividing it.
Because the probability that the car is in door A, B, and C is all 1/3.
Then we can get: If the car is in A, the probability of getting the car by changing the choice is 0.
If the car is in B, the probability of getting the car by changing the choice is 1.
If the car is in C, it is the same as B.
So the probability of getting the car by changing the choice is 2/3.
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 9 楼』:
使用 LLM 解释/回答一下
发信人: ufo (老虎独坐静听风吼), 信区: IQDoor
标 题: Re: 哪位大侠把那道概率题的思路详细说一下?
发信站: BBS 水木清华站 (Fri Jul 27 23:28:14 2001)
有一推理有问题。
【 在 warreni (胖猫) 的大作中提到: 】
: 我是这样认为的:
: 你开始选定一个门(A),其中有汽车的概率是1/3
: 而另两个门B、C中有汽车的概率是2/3
: 不管主持人打开B、C中的哪一个空门,上面这两个概率是不会变的
: 假设主持人打开B,是空的,那么C中有汽车的概率是2/3
这一步我认为不成立。
前面说的B C中有汽车的概率为2/3的前提是有三个未知数;当你已知B里没有
汽车的时候,未知数仅剩下A和C两个,你如何说明B/C中有汽车的概率还是2/3
呢?
试想题目变成这样:有三个门A B C,已知三个门中有一个门里有车,而且B
里没有车,那你是选A还是选C?
: 所以应该换一个选择
The sender: ufo (Tiger sits alone listening to the wind howling), in the forum area: IQDoor
Subject: Re: Which expert can explain in detail the thinking of that probability problem?
Posted: BBS Tsinghua Station (Fri Jul 27 23:28:14 2001)
There is a problem with a reasoning.
【In reply to warreni (Fat Cat)】
: I think like this:
: You initially choose a door (A), the probability that there is a car in it is 1/3
: And the probability that there is a car in the other two doors B, C is 2/3
: No matter which empty door among B, C the host opens, the above two probabilities will not change
: Suppose the host opens B, which is empty, then the probability that there is a car in C is 2/3
This step I think is not valid.
The premise that the probability of having a car in B C is 2/3 earlier is based on three unknowns; when you know that there is no car in B, the unknowns are only A and C two, how do you explain that the probability of having a car in B/C is still 2/3?
Imagine the problem becomes like this: There are three doors A B C, it is known that there is a car in one of the three doors, and there is no car in B, then will you choose A or C?
: So you should change the choice
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 10 楼』:
使用 LLM 解释/回答一下
发信人: warreni (胖猫), 信区: IQDoor
标 题: Re: 哪位大侠把那道概率题的思路详细说一下?
发信站: BBS 水木清华站 (Sat Jul 28 23:41:48 2001)
概率和未知数个数有什么关系?
只要主持人所做的是一确定事件,并且不改变汽车的位置,
B、C中有汽车的概率和就不应该改变
【 在 ufo (老虎独坐静听风吼) 的大作中提到: 】
: 有一推理有问题。
: 这一步我认为不成立。
: 前面说的B C中有汽车的概率为2/3的前提是有三个未知数;当你已知B里没有
: 汽车的时候,未知数仅剩下A和C两个,你如何说明B/C中有汽车的概率还是2/3
: 呢?
: 试想题目变成这样:有三个门A B C,已知三个门中有一个门里有车,而且B
: 里没有车,那你是选A还是选C?
B里没有汽车,也即B中有汽车的概率为零,A、C有车的概率分别为1/2
The sender: warreni (Fat Cat), in the forum area: IQDoor
Subject: Re: Which expert can explain the train of thought of that probability problem in detail?
Posted: BBS Tsinghua University Station (Sat Jul 28 23:41:48 2001)
What is the relationship between probability and the number of unknowns?
As long as what the host does is a definite event and does not change the position of the car,
the sum of the probabilities that there is a car in B and C should not change
【From ufo (Tiger sits alone listening to the wind roar)】
: There is a problem in the reasoning.
: I think this step is not valid.
: The premise that the probability that there is a car in B and C is 2/3 mentioned earlier is based on there being three unknowns; when you already know that there is no car in B, there are only two unknowns left, A and C. How can you say that the probability that there is a car in B/C is still 2/3?
: Imagine the question is changed to this: There are three doors A, B, C. It is known that there is a car in one of the three doors, and there is no car in B. Then will you choose A or C?
There is no car in B, that is, the probability that there is a car in B is zero, and the probabilities that there is a car in A and C are 1/2 respectively
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 11 楼』:
使用 LLM 解释/回答一下
发信人: take (害怕惊醒的黑梦), 信区: IQDoor
标 题: Re: 哪位大侠把那道概率题的思路详细说一下?
发信站: BBS 水木清华站 (Sat Jul 28 23:58:02 2001)
这样考虑有问题吧,
你的意思是在这种前提下保证了(B+C)里有车的概率不变,还是2/3,
但是你却‘强行’改了C里单独的概率,从1/3改为2/3.
那我同样可以这样设想:我保证(A+B+C)里有车的概率不变,始终为1,
发现B里每车后,A,C的概率就都改为了1/2了。
Sender: take (The black dream afraid of being awakened), Board: IQDoor
Subject: Re: Which expert can explain the train of thought of that probability problem in detail?
Posted: BBS Tsinghua Station (Sat Jul 28 23:58:02 2001)
Is there a problem with this consideration?
You mean that under this premise, the probability that there is a car in (B+C) remains unchanged, still 2/3,
but you "forcefully" changed the probability in C alone from 1/3 to 2/3.
Then I can also imagine like this: I ensure that the probability that there is a car in (A+B+C) remains unchanged, always 1,
and after finding that there is a car in B, the probabilities of A and C are both changed to 1/2.
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 12 楼』:
使用 LLM 解释/回答一下
其实如果完全从概率来考虑的话,对抽奖人来说主持人打开B、C门的机会相等
因此C里有车的概率是2/3×1/2,还是1/3
In fact, if we consider it completely from the perspective of probability, for the lottery participant, the host has an equal chance of opening door B and door C. So the probability that there is a car in C is 2/3 × 1/2, or 1/3
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
ko20010214
版主
       
积分 7294
发帖 1628
注册 2002-10-16
状态 离线
|
『第 13 楼』:
使用 LLM 解释/回答一下
建议你这么理解:
假设做300次实验,如果每次你都选A,按概率应该中奖100次
而如果你改变每次都是先选A,然后改变选择,
则应中奖200次(因为只有上述这两种情况)
而又由于主持人打开B、C的机会应该是均等的,
所以改变选择的情况下应该是猜B或C中奖各100次
至此你就发现ABC门后有车的概率是均等的,都是1/3
Suggest you understand it this way: Suppose you do 300 experiments. If you always choose A each time, you should win the prize about 100 times according to probability. But if you always first choose A and then change your choice, you should win the prize about 200 times (because there are only these two situations). Also, because the host should have an equal chance to open B and C, when you change your choice, you should win the prize about 100 times for B and 100 times for C respectively. Up to this point, you will find that the probabilities of having a car behind doors A, B, and C are equal, all 1/3.
|

ko20010214
=================================
大功告成,打个Kiss!
ko20010214@MSN.com
神州优雅Q300C
Intel CeleronM 370处理器 | 256MbDDR内存
40G硬盘 | USB2.0 | IEEE 1394
13.3 ' WXGA 宽屏(16:10) | COMBO光驱
10/100M网卡 | 四合一读卡器
|
|
2003-6-20 00:00 |
|
|
hunome
银牌会员
     颓废青年
积分 2265
发帖 721
注册 2003-5-12
状态 离线
|
『第 14 楼』:
使用 LLM 解释/回答一下
不对,这个肯定是换了占便宜。
你最初选的门概率是不变的,但主儿开了一个门后,其他没有选中的门概率发生了变化。这个不是从33%变到50%的问题,而是从33%变到66%的问题。
我可以举个极端的例子。如果有10000个门。你最初选了一个。你当然不会选的那么准,其实只有10000分之1的机会。但主儿打开了另外9998扇门,这时你换不换?
废话,当然换了。凭感觉也知道,这时另一个门的概率已经极大了。实际上是9999/10000 .
No, this must be taking advantage.
The probability of the door you initially chose remains unchanged, but after the host opens a door, the probability of the other unselected doors changes. This is not a matter of changing from 33% to 50%, but from 33% to 66%.
I can give an extreme example. If there are 10,000 doors. You initially chose one. Of course, you won't be so accurate, actually only a 1/10,000 chance. But the host opens the other 9,998 doors, then do you change?
Nonsense, of course you change. Intuitively, you know that the probability of the other door has become extremely high. Actually it's 9999/10000.
|
|
2003-6-20 00:00 |
|
|
hunome
银牌会员
     颓废青年
积分 2265
发帖 721
注册 2003-5-12
状态 离线
|
『第 15 楼』:
使用 LLM 解释/回答一下
选不换的人是因为受了50%的误导。
People who choose not to change are because they have been misled by 50%.
|
|
2003-6-20 00:00 |
|